The Startup Alternative with Gabriela de Queiroz – O’Reilly

Generative AI in the Real World

Generative AI within the Actual World

Generative AI within the Actual World: The Startup Alternative with Gabriela de Queiroz



Loading





/

Ben Lorica and Gabriela de Queiroz, director of AI at Microsoft, discuss startups: particularly, AI startups. How do you get seen? How do you generate actual traction? What are startups doing with brokers and with protocols like MCP and A2A? And which safety points ought to startups look ahead to, particularly in the event that they’re utilizing open weights fashions?

Take a look at different episodes of this podcast on the O’Reilly studying platform.

In regards to the Generative AI within the Actual World podcast: In 2023, ChatGPT put AI on everybody’s agenda. In 2025, the problem can be turning these agendas into actuality. In Generative AI within the Actual World, Ben Lorica interviews leaders who’re constructing with AI. Study from their expertise to assist put AI to work in your enterprise.

Factors of Curiosity

  • 0:00: Introduction to Gabriela de Queiroz, director of AI at Microsoft.
  • 0:30: You’re employed with a variety of startups and founders. How have the alternatives for startups in generative AI modified? Are the alternatives increasing?
  • 0:56: Completely. The entry barrier for founders and builders is far decrease. Startups are exploding—not simply the quantity but in addition the attention-grabbing issues they’re doing.
  • 1:19: You catch startups once they’re nonetheless exploring, making an attempt to construct their MVP. So startups should be extra persistent in looking for differentiation. If anybody can construct an MVP, how do you distinguish your self?
  • 1:46: At Microsoft, I drive a number of strategic initiatives to assist growth-stage startups. I additionally information them in fixing actual ache factors utilizing our stacks. I’ve designed applications to highlight founders. 
  • 3:08: I do a variety of engagement the place I assist startups go from the prototype or MVP to impression. An MVP shouldn’t be sufficient. I have to see an actual use case and I have to see some traction. After they have actual prospects, we see whether or not their MVP is working.
  • 3:49: Are you beginning to see patterns for gaining traction? Are they specializing in a particular area? Or have they got a very good dataset?
  • 4:02: If they’re fixing an actual use case in a particular area or area of interest, that is the place we see them succeed. They’re fixing an actual ache, not constructing one thing generic. 
  • 4:27: We’re each in San Francisco, and fixing a particular ache or discovering a particular area means one thing completely different. Techie founders can construct one thing that’s utilized by their buddies, however there’s no income.
  • 5:03: This occurs in every single place, however there’s a much bigger tradition round that right here. I inform founders, “That you must present me traction.” We now have a number of corporations that began as open supply, then they constructed a paid layer on prime of the open supply venture.
  • 5:34: You’re employed with the parents at Azure, so presumably you realize what precise enterprises are doing with generative AI. Are you able to give us an thought of what enterprises are beginning to deploy? What’s the stage of consolation of enterprise with these applied sciences?
  • 6:06: Enterprises are a bit bit behind startups. Startups are constructing brokers. Enterprises aren’t there but. There’s a variety of heavy lifting on the info infrastructure that they should have in place. And their use instances are complicated. It’s much like Large Information, the place the enterprise took longer to optimize their stack.
  • 7:19: Are you able to describe why enterprises have to modernize their knowledge stack? 
  • 7:42: Actuality isn’t magic. There’s a variety of complexity in knowledge and the way knowledge is dealt with. There’s a variety of knowledge safety and privateness that startups aren’t conscious of however are vital to enterprises. Even the varieties of information—the info isn’t effectively organized, there are completely different groups utilizing completely different knowledge sources.
  • 8:28: Is RAG now a well-established sample within the enterprise?
  • 8:44: It’s. RAG is a part of everyone’s workflow.
  • 8:51: The widespread use instances that appear to be additional alongside are buyer assist, coding—what different buckets are you able to add?
  • 9:07: Buyer assist and tickets are among the many predominant pains and use instances. And they’re very costly. So it’s a straightforward win for enterprises once they transfer to GenAI or AI brokers. 
  • 9:48: Are you saying that the instrument builders are forward of the instrument patrons?
  • 10:05: You’re proper. I speak so much with startups constructing brokers. We focus on the place the trade is heading and what the challenges are. In case you assume we’re near AGI, attempt to construct an agent and also you’ll see how far we’re from AGI. Whenever you need to scale, there’s one other stage of problem. After I ask for actual examples and prospects, the bulk aren’t there but.
  • 11:01: A part of it’s the terminology. Folks use the time period “agent” even for a chatbot. There’s a variety of confusion. And startups are hyping the notion of multiagents. We’ll get there, however let’s begin with single brokers first. And you continue to want a human within the loop. 
  • 11:40: Sure, we speak in regards to the human within the loop on a regular basis. Even people who find themselves bragging, if you ask them to indicate you, they’re not there but.
  • 12:00: On the agent entrance, if I requested you for a brief presentation with three slides of examples that caught your consideration, what would they be?
  • 12:30: There’s an organization doing an AI agent with emails and your calendar. Everybody makes use of e-mail and calendars all day lengthy. If we need to schedule dinner with a gaggle of buddies, however now we have individuals with dietary restrictions, it might take endlessly to discover a restaurant that checks all of the packing containers. There’s an organization making an attempt to make this automated.
  • 14:22: In current months, builders have rallied round MCP and now A2A. Somebody requested me for an inventory of vetted MCP servers. If the server comes from the corporate that developed the applying, tremendous. However there are literally thousands of servers, and I’m cautious. We have already got software program provide chain points. Is MCP taking off, or is it a short lived repair?
  • 15:48: It’s too early to say that that is it. There’s additionally the Google protocol (A2A); IBM created a protocol; that is an ongoing dialogue, and since it’s evolving so quick, one thing will in all probability come within the subsequent few months.
  • 16:31: It’s very very similar to the web and the requirements that emerged from there. You can also make it formal, or you possibly can simply construct it, develop it, and in some way it turns into an empirical open customary.
  • 17:15: We’re implicitly speaking about textual content. Have you ever began to see near-production use instances involving multimodal fashions?
  • 17:37: We’ve seen some use instances with multimodality, which is extra complicated.
  • 17:48: Now it’s important to increase your knowledge technique to all these completely different knowledge varieties.
  • 18:07: Going again to the slides: If I had three slides, I’d attempt to get everybody on the identical web page about what an AI agent is. All the massive corporations have their very own definitions. I’d set the stage with my definition: a system that may take motion in your half. Then I’d say, should you assume we’re near AGI, attempt to construct an agent. And the third slide can be to construct one agent, quite than a multiagent. Begin small, after which you possibly can scale, not the opposite means round.
  • 19:44: Orchestration of 1 agent is one factor. Lots of people throw across the time period orchestration. For knowledge engineering, orchestration means one thing particular, and so much goes into it, even for a single agent. For multiagents, it’s much more complicated. There’s orchestration and there’s communication too. An agent could withhold, ignore, or misunderstand info. So stick to one agent. Get that executed and transfer ahead.
  • 20:33: The large factor within the foundational mannequin house is reasoning. What has reasoning opened up for a few of these startups? What purposes depend on a reasoning-enhanced mannequin? What mannequin ought to I take advantage of, and might I get by with a mannequin that doesn’t cause?
  • 21:15: I haven’t seen any startup utilizing reasoning but. Most likely due to what you might be speaking about. It’s costly, it’s slower, and startups have to see wins quick. 
  • 21:46: They simply ask for extra free credit.
  • 21:51: Free credit aren’t endlessly. However it’s not even the associated fee—it’s additionally the method and the ready. What are the trade-offs? I haven’t seen startups speaking with me about utilizing reasoning.
  • 22:22: The sound recommendation for anybody constructing something is to be mannequin agnostic. Design what you’re doing so you should utilize a number of fashions or swap fashions. We now have open weights fashions which can be changing into extra aggressive. Final 12 months we had Llama; now we even have Qwen and DeepSeek, with an unimaginable launch cadence. Are you seeing extra startups choosing open weights?
  • 23:19: Positively. However they should be very cautious once they use open fashions due to safety. I see a variety of corporations utilizing DeepSeek. I ask them about safety.
  • 23:43: Within the open weights world, you possibly can have spinoff fashions. Who vets the derivatives? Proprietary fashions have much more management. And there’s provide chain dangers, although they’re not distinctive to the open weights fashions. All of us rely on Python and Python libraries.
  • 25:17: And with individuals forking spinoff fashions. . . We’ve seen this with merchandise as effectively; individuals constructing merchandise and being worthwhile on prime of open supply initiatives. Folks constructed on a fork of a Python venture or prime of Python libraries and [became] worthwhile. 
  • 25:55: With the Chinese language open weights fashions, I’ve talked to safety individuals, and there’s nothing inherently insecure about utilizing the weights. There could be architectural variations. However should you’re utilizing one of many Chinese language fashions of their open API, they may have to show over knowledge. Usually, entry to the weights isn’t a standard assault vector.
  • 27:03: Or you should utilize corporations like Microsoft. We now have DeepSeek R1 obtainable on Azure. However it’s gone by means of rigorous red-teaming and security analysis to mitigate dangers. 
  • 27:39: There are variations when it comes to alignment and red-teaming between Western and Chinese language corporations.
  • 28:26: In closing, are there any parallels between what you’re seeing now and what we noticed in knowledge science?
  • 28:40: It’s related, however the scale and velocity are completely different. There are extra assets and accessibility. The barrier to entry is decrease. 
  • 29:06: The hype cycle is identical. You keep in mind all of the tales about “Information science is the horny new job.” However the know-how is now far more accessible, and there are much more tales and extra pleasure.
  • 29:29: Again then, we solely had a couple of choices: Hadoop, Spark. . . Not like 100 completely different fashions. And so they weren’t accessible to most people. 
  • 30:03: Again then individuals didn’t want Hadoop or MapReduce or Spark in the event that they didn’t have a number of knowledge. And now, you don’t have to make use of the brightest or best-benchmarked LLM; you should utilize a small language mannequin.